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Abstract: - Cuckoo search (CS) algorithm is one of the latest additions to the group of nature inspired 

optimization heuristics. It has been introduced by Young and Deb in 2009 and was proven to be a promising 

tool for solving hard optimization problems. This paper presents a modified cuckoo search  algorithm for 

unconstrained optimization problems. We implemented a modification where the step size is determined from 

the sorted, rather than only permuted fitness matrix. Our modified algorithm was tested on ten standard 

benchmark functions. Experimental results show that our modification improves results in most cases, 

compared to the pure cuckoo search algorithm.  
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1 Introduction 
1Optimization has always been an active research 

area since many real-world optimization problems 

belong to a class of hard problems. In all 

optimization problems the goal is to find the 

minimum or maximum of the objective function. 

Thus, unconstrained optimization problems can be 

formulated as minimization or maximization of D-

dimensional function: 
 

           Min (or max) f(x), x=(x1,x2,x3,…xD)       (1) 
 

where D is the number of variables to be optimized.  
Many population based algorithms were 

proposed for solving unconstrained optimization 

problems. Genetic Algorithms (GA), Particle 

Swarm Optimization (PSO), and Bee Algorithms 

(BA) are among most popular such algorithms. The 

success or failure of a population based algorithms 

depends on its ability to establish proper trade-off 

between exploration and exploitation. A poor 

balance between exploration and exploitation may 

result in a stagnation and premature convergence to 

local optima [1], [2]. 

GA is one of the most popular evolutionary 

algorithms (EA) in which a population of 

individuals evolves (moves through the fitness 
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landscape) according to a set of rules such as 

selection, crossover and mutation [3], [4], [5], 

possibly hybridized with local search [6]. In GA 

exploitation is performed by selection operator 

where individuals move to the peaks in the fitness 

landscape. Exploration is achieved by perturbing 

individuals using crossover and mutation operators. 

There is also fourth operator, introduced by John 

Holland, called inversion which is nowadays rarely 

used.  

PSO algorithm is another example of population 

based algorithms [7]. PSO is a stochastic optimiza-

tion technique which is well adapted to the 

optimization of nonlinear functions in multi-

dimensional space and it has been applied to many 

real-world problems [8]. A basic variant of the PSO 

algorithm operates by having a population (swarm) 

of candidate solutions (particles). Particles are 

moved within the search space according to a simple 

equation. The movements of the particles are guided 

by their own best known position in the search 

space as well as the entire swarm’s best known 

position.  

Ant colony optimization is well established 

swarm intelligence metaheuristic based on ant 

colony foraging behavior. It has been used 

successfully for different problems [9], [10], [11]. 

Several metaheuristics have been proposed to 

model the specific intelligent behavior of honey bee 

swarms [12], [13], [14], [15]. The bee swarm 

WSEAS TRANSACTIONS on SYSTEMS Milan Tuba, Milos Subotic, Nadezda Stanarevic

E-ISSN: 2224-2678 62 Issue 2, Volume 11, February 2012



intelligence was used in the development of 

artificial systems aimed at solving complex 

problems in traffic and transportation [13]. That 

algorithm is called bee colony optimization 

metaheuristic (BCO), which is used for solving 

deterministic combinatorial problems, as well as 

combinatorial problems characterized by 

uncertainty. The artificial bee colony (ABC) 

algorithm is a relatively new population based meta-

heuristic approach based on honey bee swarm [16]. 

In this algorithm possible solution to the problem is 

represented by food source. Quality of the solution 

is indicated by the amount of nectar of a particular 

food source. Exploitation process is carried by 

employed and onlooker bees, while exploration is 

done by scouts. There are a number of 

improvements to the ABC algorithm [17], [18], 

[19]. 

A new metaheuristic search algorithm, called 

cuckoo search (CS), based on cuckoo bird’s 

behavior has been developed by Yang and Deb [20]. 

It is a very new population based metaheuristic for 

global optimization and only few papers have been 

published about it [21], [22]. The original article 

does not explain all implementation details, there 

are some differences between descriptions in the 

original paper and later book by same authors [23]. 

We wanted to test our understanding of the original 

algorithm as well as to try to improve it.  In this 

paper we will introduce our modified version of CS 

algorithm and validate it against pure version on ten 

standard unconstrained test functions. For testing 

purposes, we developed our CS software named 

CSapp on which we implemented both, original and 

modified CS algorithm in order to make 

comparison.  

The rest of this paper is organized as follows. In 

Section 2, we give a brief introduction to cuckoo 

bird’s behavior which is necessary in order to 

understand CS algorithm. However, the target topic 

of Section 2 is detailed description of CS algorithm 

in both forms: original and modified. Section 3 

reports numerical test functions, experimental 

settings of the algorithm, and experimental analysis 

on the proposed approach in comparison with the 

original CS algorithm. Finally, Section 4 concludes 

this work.  

 

 

2 Cuckoo search algorithm 
Cuckoo birds attract attention because of their 

unique aggressive reproduction strategy. Cuckoos 

engage brood parasitism. It is a type of parasitism in 

which a bird (brood parasite) lays and abandons its 

eggs in the nest of another species. There are three 

basic types of brood parasitism: intraspecific brood 

parasitism, cooperative breeding, and nest takeover 

[21]. Some species such as the Ani and Guira 

cuckoos lay their eggs in communal nests, though 

they may remove others’ eggs to increase the 

hatching probability of their own eggs [20]. Some 

host birds do not behave friendly against intruders 

and engage in direct conflict with them. In such 

situation host bird will throw those alien eggs away. 

In other situations, more friendly hosts will simply 

abandon its nest and build a new nest elsewhere. 

While flying, some animals and insects follow 

the path of long trajectories with sudden 90
0
 turns 

combined with short, random movements. This 

random walk is called Lévy flight and it describes 

foraging patterns in natural systems, such as systems 

of ants, bees, bumbles, and even zooplanktons. 

Mathematical formulation of Lévy flight relates to 

chaos theory and it is widely used in stochastic 

simulations of random and pseudo-random 

phenomena in nature. These flights can also be 

noticed in the movements of turbulent fluids. One 

example of Lévy flight paths is depicted on Fig. 1.  
 

 

 
 

 

Fig. 1. Possible Lévy flight path 
 

Lévy-style search behavior [24] and random 

search in general has been applied to optimization 

and implemented in many search algorithms [25], 

[26]. One of such algorithms is CS [21]. Preliminary 

results show its promising capability.    

  

 

2.1 Description of the original CS algorithm 

Cuckoo Search algorithm is population based 

stochastic global search metaheuristics. It is based 

on the general random walk system which will be 

briefly described in this chapter. 
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 In Cuckoo Search algorithm, potential solutions 

corresponds to Cuckoo eggs. Nature systems are 

complex and thus, they cannot be modeled by 

computer algorithms in its basic form. 

Simplification of natural systems is necessary for 

successful implementation in computer algorithms. 

One approach is to simplify novel Cuckoo 

Search algorithm through three below presented 

approximation rules: 

 Cuckoos chose random location (nest) for 

laying their eggs. Artificial cuckoo can lay only 

one egg at the time.  

 Elitist selection process is applied, so only the 

eggs with highest quality are passed to the next 

generation 

 Host nests number is not adjustable. Host bird 

discovers cuckoo egg with probability pd   

[0,1]. If cuckoo egg is disclosed by the host, it 

may be thrown away, or the host may abandon 

its own nest and commit it to the cuckoo 

intruder. 
 

To make the things even simpler, the last 

assumption can be approximated by the fraction of 

pd of n nests that are replaced by new nests with new 

random solutions. Considering maximization pro-

blem, the quality (fitness) of a solution can simply 

be proportional to the value of its objective function. 

Other forms of fitness can be defined in a similar 

way the fitness function is defined in genetic algo-

rithms and other evolutionary computation algo-

rithms. A simple representation where one egg in a 

nest represents a solution and a cuckoo egg 

represents a new solution is used here. The aim is to 

use the new and potentially better solutions 

(cuckoos) to replace worse solutions that are in the 

nests. It is clear that this algorithm can be extended 

to the more complicated case where each nest has 

multiple eggs representing a set of solutions.  

A new solution x
(t+1)

 for  cuckoo i is generated 

using a Lévy flight according to the following 

equation: 
 

               xi
(t+1)

 = xi
(t)

 + α ^ Lévy (λ),                 (2) 
 

where α  (α>0) represents a step scaling size. This 

parameter should be related to the scales of problem 

the algorithm is trying to solve. In most cases, α can 

be set to the value of 1 or some other constant. The 

product  ^  represents entry-wise multiplications. 

Eq. (2) states that described random walk is a 

Markov chain, whose next location depends on two 

elements: current location (first term in Eq. 2) and 

transition probability (second term in the same 

expression).  

The random step length is drawn from a Lévy 

distribution which has an infinite variance with an 

infinite mean:  

                      Lévy ~ u = t 
-λ
                         (3) 

 

where λ   (0,3]. 

Taking into account basic three rules described 

above, pseudo code for CS algorithm is: 
  

   Start 
       Objective function f(x), x= (x1,x2…xu)T 
       Generating initial population of n host nests xi 

            (i=1,2,…n) 
   While (t<MaxGenerations) and (! termin.condit.) 
       Move a cuckoo randomly via Lévy flights 
       Evaluate its fitness Fi   
        Randomly choose nest among n available nests    
        (for example j)  
       If(Fi > Fj) Replace j by the new solution; 
       Fraction pd  of worse nests are abandoned and    
       new nests are being built; 
       Keep the best solutions or nests with quality  
       solutions; 
       Rank the solutions and find the current best  
   End while 
   Post process and visualize results 
   End  
 

 

2.2 Modified cuckoo search algorithm 

In the real world, if a cuckoo's egg is very similar to 

a host's eggs, then this cuckoo's egg is less likely to 

be discovered, thus the fitness should be related to 

the difference in solutions.  Therefore, it is a good 

idea to do a random walk in a biased way with some 

random step sizes.  

Both, original, and modified code use random 

step sizes. Compared to the original code, we use 

different function set for calculating this step size. 

In the original code, step size is calculated using 

following code expression: 
 

r*nests[permute1[i]][j]- nests[permute2 [i]][j]   (4)     
 

where r is random number in [0,1] range, nests is 

matrix which contains candidate solutions along 

with their variables, permute1 and permute2 are 

different rows permutation functions applied on 

nests matrix.  

In order to calculate the step size, instead of 

Equation (4), we used: 
 

r*nests [sorted [i]][j] - nests [permute [i]][j]    (5) 
 

The difference is that instead of permute1, we 

used sorted function. This function sorts nests 
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matrix by fitness of contained solutions. In this way, 

higher fitness solutions have slight advantage over 

solutions with lower fitness. This method keeps the 

selection pressure (the degree to which highly fit 

solutions are selected) towards better solutions and 

algorithm should achieve better results. That does 

not mean that high fitness solutions will flood 

population and the algorithm will become stuck in 

local optimum. 

CS algorithm detects best solution Xbest at the 

beginning of each iterative step. Also, at this point 

step scale factor is being calculated using Eq. 6: 
 

   
  








/1

2/)1(22/1

2/sin1














u , 1v    (6) 

 

where β denotes Lévy distribution parameter and 

𝝘 denotes gamma function.   
The evolution of cuckoo i  starts with the donor 

vector v, where v = xi
(t)

. . Step size is being 

calculated according to Eq. 7. 
 

Stepsize
(t+1)

= )(
||

01.0
/1)1(

)1(

bestt

t

xv
v

u







          (7) 

 

where ),0(~ 2

uNu   ),0(~ 2

vNv   are samples 

from corresponding normal distributions. Sample 

from Levi distribution is generated by Mantegna’s 

algorithm. For the step size according to Levi 

distribution we used recommended parameter β=1.5.  

Our modified algorithm depends on the best 

found solution but it is not remembered in any 

separate memory since the best solution, according 

to the algorithm, is always retained among current 

solutions. That means that the process retains 

Markov property since the next state again depends 

only on the current state and not the past.  

CS algorithm uses some sort of elitism and 

selection similar to that used in harmony search 

[27]. However, the randomization is more efficient 

as the step length is heavy-tailed, and any large step 

is possible. Also, the number of tuning parameters 

in CS is less than in GA and PSO, and thus CS can 

be much easier adapted to a wider class of 

optimization problems. 

 

 

3 Experiments 
In this section, we show experimental results which 

validated our modified CS algorithm. As mentioned 

above, we developed CS software (CSapp), and all 

tests were run in our testing environment. We 

developed our software in JAVA programming 

language. We used the latest JDK (Java 

Development Kit) version 7 and NetBeans IDE 

(Integrated Development Environment) version 

6.9.1, which keeps us up to date with the newest 

software development concepts.  

 For testing purposes, we also implemented 

original version of CS algorithm. We compared 

results of modified CS algorithm with the original 

one. Comparison of results is shown in the tables 

within this section. 

 

 

3.1 Benchmarks 
To test the performance of a modified CS, ten well 

known benchmark functions are used here for 

comparison, both in terms of optimum solution after 

a predefined number of iterations and the robustness 

of the algorithm i.e. mean value and variance and 

worst solution for a number of runs. These 

benchmarks are widely used in evaluating 

performance of population based methods. 

Some of the benchmark functions are unimodal, 

while others are multimodal. A function is called 

unimodal if it has only one optimum position. The 

multimodal functions have two or more local 

optima. 

In order to show how our algorithm performs, we 

used the following set of functions: 
 

 Ackley  

 DixonAndPrice 

 Griewank  

 Penalized 

 Rastrigin 

 Schwefel 

 Sphere 

 Step 
 Perm 
 Zakharov 
 
 

Ackley function is a continuous, multimodal 

function obtained by modulating an exponential 

function with a cosine wave of moderate amplitude. 

Originally, it was formulated by Ackley only for the 

two – dimensional case. It is presented here in a 

generalized, scalable version. Its topology is 

characterized by an almost flat (due to the 

dominating exponential) outer region and a central 

hole or peak where the modulations by the cosine 

wave become more and more influential.  

Formulation: 

f(x)= - 20exp(    √
 

 
∑   

  
   ) –  

- exp (
 

 
∑            

   )       
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The global minimum value for this function is 0 

and the corresponding global optimum solution is 

xopt =(x1, x2,…,xn) = (0, 0, . . .  , 0). 

 

Figure 1: Surface plot for Ackley function 
 

 
 

DixonAndPrice is our second test function. 

Formulation: 
 

f(x)=           + ∑      
  

           2
 

 

Global minimum is  f5 (x) = 0. 

 

Figure 2: Surface plot for Dixon and Price 

function 
 

 
 

Griewank is third test function. Formulation:  
 

f(x) = ∑
  

 

    
  ∏       

 
   

 
    √       

 

X is in the interval of [-600, 600]. The global 

minimum value for this function is 0 and the 

corresponding global optimum solution is  xopt =(x1, 

x2, . . . , xn) = (100, 100, . . .  , 100). Since the 

number of local optima increases with the 

dimensionality, this function is strongly multimodal. 

The multimodality disappears for sufficiently high 

dimensionalities (n > 30) and the problem seems 

unimodal.  

 

Figure 3: Surface plot for Griewank function 
 

 

 

Penalized function is difficult for optimization 

because of its combinations of different periods of 

the sine function. Formulation: 
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The global minimum value for this function is 0 

and the corresponding global optimum solution is 

xopt =(x1, x2, . . . , xn-1, xn) = (-1, -1, . . .  , -1, -5). X 

is in the interval of [-32, 32].  

 

 

Figure 4: Surface plot for penalized function 
 

 
 

Rastrigin function is based on Sphere function 

with the addition of cosine modulation to produce 

many local minima. Formulation: 
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f(x) = 10n + ∑    
  

                   
 

The global minimum value for this function is 0 

and the corresponding global optimum solution is 

xopt =(x1, x2, . . . , xn) = (0, 0, . . .  , 0). X is in the 

interval of [-5.12, 5.12]. 

 

Figure 5: Surface plot for Rastrigin function 
 

 
 

Schwefel function as our sixth benchmark. 

Formulation: 

f(x) = ∑         √    
 
    

 

This function has a value - 418.9828 and  at its 

global minimum (420.9867, 420.9867,…, 

420.9867). Schwefel’s function is deceptive in that 

the global minimum is geometrically distant, over 

the variable space, from the next best local minima. 

Therefore, the search algorithms are potentially 

prone to convergence in the wrong direction. Test 

area is usually restricted to hypercube – 500 ≤ xi ≤ 

500,  i = 1, . . . , n. 

 

Figure 6: Surface plot for Schwefel function 
 

 
 

Sphere function that is continuous, convex and 

unimodal. Formulation:  
 

f(x)=∑   
  

    
 

Global minimum value for this function is 0 and 

optimum solution is xopt =(x1, x2,…,xn) = (0, 0, .. , 0). 

x is in the interval of [-100, 100].  

 

Figure 7: Surface plot for Sphere function 
 

 
 

Step is our eighth benchmark function.  

Formulation: 
 

f(x) = ∑            
    

 

This function represents the problem of flat 

surfaces. It is very hard for algorithms without 

variable step sizes to conquer flat surfaces problems 

because there is no information about which 

direction can provide optimal solution. 

 

Figure 8: Surface plot for Step function 

 

Ninth function used for tests is Perm function. 

Formulation:  






 







n

k

n

i
i

kkxf ixi
1

2

1

)( )1)/()(5.0(  

The global minimum of Perm function is 0and 

corresponding optimal solution is xopt = (x1, x2, . . . 

xn) = (1, 2,…, n). 

WSEAS TRANSACTIONS on SYSTEMS Milan Tuba, Milos Subotic, Nadezda Stanarevic

E-ISSN: 2224-2678 67 Issue 2, Volume 11, February 2012



 

Figure 9: Surface plot for Perm function 

Our last test function is Zakharov function. 

Formulation:
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Zakharov function has a global minimum of 0 for 

xopt = (x1, x2, . . . xn) = (0, 0,…, 0). 

 

Figure 10: Surface plot for Zakharov function 
 

Summary of above mentioned benchmarks is 

given in Table 1. Variable range and formulation is 

shown for the each test function. Optimum for all 

functions is at (0, …, 0). 

 

 

3.2 Experimental results and algorithm’s 

  settings 
We tried to vary the number of host nests 

(population size n) and the probability of discovery 

pd. We have used different settings for n  (5, 10, 15, 

20, 50, 100, 150, 250, 500) and for pd. (0, 0.01, 0.05, 

0.1, 0.15, 0.2, 0.25, 0.4, 0.5) . From test phase 

simulations, we found that n = 25 and pd = 0.25 are 

sufficient for most optimization problems. This 

means that the fine parameters tuning are not needed 

for any given problem. Therefore, we used fixed     

n = 25 and pd = 0.25 for all given problems.  

 

 

Function Range Formulation 
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Rastrigin 
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n
 

10n + ∑    
  

                   

Schwefel 
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500,500]
n
 

∑        √    
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Table 1: Benchmark functions summary 

 

We tested each benchmark function six times 

with 5, 10, 50, 100, 500 and 1000 variables. Thus, 

we conducted totally 48 tests (8 functions * 6 

variable numbers). For every test, we carried on 30 

runs with 500 cycles per each run. We printed out 

best, worst and mean results as well the standard 

deviation within the set of 30 runs. Parameter 

settings are in Table 2.  

 

Parameter Value 

Runtime 30 

Max Cycle 500 

n 25 

D 5/10/50/100/500/1000 

pd 0.25 
 

Table 2: Parameter settings for benchmark 

functions. 
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Tests were done on Intel Core2Duo T8300 

mobile processor with 4GB of RAM on Windows 7 

x64 Ultimate Operating System and NetBeans 6.9.1 

IDE (Integrated Development Environment). 

Experimental results with 5, 10, 50, 100, 500 and 

1000 variables are shown in Tables 3, 4, 5, 6, 7 and 

8 respectively. All tables have two columns with 

results in order to make side by side comparison. In 

the first column, we show results of original, and in 

the second, results of modified algorithm. We 

showed values for best, mean, worst and standard 

deviation.  
 
  

Function  Original Modified 

Ackley 

Best 
Mean 
Worst 
SD 

1.17E-12 
8.52E-11 
1.24E-09 
2.23E-10 

3.05E-13 
0.01E-11 
9.52E-10 
1.12E-10 

DixonAndPrice 
 

Best 
Mean 
Worst 
SD 

3.40E-1 
0.057 
0.123 
0.097 

2.32E-2 
0.008 
0.035 
0.012 

Griewank 
 

Best 
Mean 
Worst 
SD 

1.32E-28 
6.72E-26 
1.65E-23 
3.26E-24 

5.66E-29 
9.05E-27 
5.97E-24 
9.31E-25 

Penalized 
 

Best 
Mean 
Worst 
SD 

1.29E-6 
2.04E-5 
9.77E-5 
2.17E-5 

5.49E-7 
1.12E-5 
5.69E-5 
0.11E-5 

Rastrigin 
 

Best 
Mean 
Worst 
SD 

3.33E-22 
1.77E-18 
5.32E-16 
9.56E-16 

1.03E-23 
3.52E-19 
8.71E-17 
5.52E-18 

Schwefel 

Best 
Mean 
Worst 
SD 

0.391 
134.333 
152.219 

68.546 

0.352 
125.886 
138.137 

56.002 

Sphere 
 

Best 
Mean 
Worst 
SD 

5.25E-26 
2.50E-22 
3.75E-21 
7.88E-22 

4.63E-28 
8.45E-24 
7.34E-22 
4.23E-23 

Step 
 

Best 
Mean 
Worst 
SD 

3.87E-6 
3.57E-5 
4.56E-4 
4.60E-5 

1.23E-6 
1.44E-5 

1.002E-4 
1.05E-5 

Perm Best 
Mean 
Worst 
SD 

1.34E-3 
2.89E-3 
3.01E-3 
4.34E-4 

6.20E-4 
1.46E-3 
1.76E-3 
7.73E-4 

Zakharov Best 
Mean 
Worst 
SD 

1.02E-1 
1.37E-1 
1.63E-1 
1.32E-1 

3.78E-2 
4.21E-2 
5.98E-2 
1.58E-2 

 

Table 3: Experimental results for 5 variables 

Reported numbers are objective function values, 

solution vectors are not of particular interest since 

there are no constraints in these benchmark 

functions. 

As we can see from the Table 3, modified CS 

algorithm has outperformed the original algorithm 

in all eight benchmark functions in tests with 5 

variables. Best values for almost all test functions 

are better by factor of 10
-1

. Difference in mean 

values is less pronounced. Results for Sphere 

benchmark showed slightly higher difference, where 

modified CS outscored the original by factor of 10
-2

.  

 
 

Function  Original Modified 

Ackley 

Best 
Mean 
Worst 
SD 

1.65E-7 
1.10E-6 
3.85E-6 
9.30E-7 

3.56E-8 
9.13E-7 
0.09E-6 
0.05E-8 

DixonAndPrice 
 

Best 
Mean 
Worst 
SD 

0.593 
0.664 
0.703 
0.013 

0.455 
0.602 
0.679 
0.004 

Griewank 
 

Best 
Mean 
Worst 
SD 

9.18E-18 
5.03E-15 
4.82E-14 
9.89E-15 

5.67E-19 
7.56E-16 
9.75E-15 
8.92E-16 

Penalized 
 

Best 
Mean 
Worst 
SD 

3.20E-4 
2.19E-4 
1.01E-3 
9.93E-3 

8.45E-4 
1.22E-3 
4.32E-2 
1.02E-2 

Rastrigin 
 

Best 
Mean 
Worst 
SD 

1.77E-15 
4.72E-09 
4.54E-08 
1.16E-08 

5.03E-17 
8.51E-11 

8.13E-9 
5.81E-10 

Schwefel 
 

Best 
Mean 
Worst 
SD 

661.309 
883.518 
903.102 
124.294 

628.205 
862.334 
891.367 
102.004 

Sphere 
 

Best 
Mean 
Worst 
SD 

4.29E-15 
6.04E-13 
5.12E-12 
9.66E-13 

1.09E-16 
2.32E-14 
4.56E-13 
4.29E-14 

Step 
 

Best 
Mean 
Worst 
SD 

8.12E-5 
3.33E-4 
2.52E-3 
7.66E-4 

1.05E-5 
1.23E-4 
0.05E-3 
2.52E-4 

Perm Best 
Mean 
Worst 
SD 

5.03E-2 
7.12E-2 
8.64E-2 
5.20E-3 

1.06E-2 
6.37E-2 
8.02E-2 
4.60E-3 

Zakharov Best 
Mean 
Worst 
SD 

4.77E-1 
5.41E-1 
6.56E-1 
1.87E-1 

3.34E-1 
4.26E-1 
5.34E-1 
1.78E-1 

 

Table 4: Experimental results for 10 variables 

WSEAS TRANSACTIONS on SYSTEMS Milan Tuba, Milos Subotic, Nadezda Stanarevic

E-ISSN: 2224-2678 69 Issue 2, Volume 11, February 2012



Both algorithms achieved downward results in 

Schwefel function tests, where best results for both 

algorithms reached are far away from Schwefel`s 

real optimum (0.391 (original) compared to 0.352 

(modified)). This can be explained with deceptive 

nature of Schwefel function whose global minimum 

is geometrically distant over the variables space 

from the next best local minima. Deceptiveness 

protracts optimization and algorithms converge in 

the wrong direction (see Section 3.1). 
 

 

Function  Original Modified 

Ackley 

Best 
Mean 
Worst 
SD 

3.91E-5 
5.39E-4 
1.25E-3 
4.19E-4 

0.72E-5 
3.21E-4 
0.05E-3 
2.09E-4 

DixonAndPrice 
 

Best 
Mean 
Worst 
SD 

0.667 
0.674 
0.692 
0.022 

0.625 
0.661 
0.685 
0.015 

Griewank 
 

Best 
Mean 
Worst 
SD 

1.58E-9 
1.60E-8 
1.10E-7 
2.50E-8 

9.92E-10 
0.41E-8 
9.92E-8 
1.02E-8 

Penalized 
 

Best 
Mean 
Worst 
SD 

0.115 
0.206 
0.295 
0.039 

0.193 
0.288 
0.322 
0.076 

Rastrigin 
 

Best 
Mean 
Worst 
SD 

8.53E-8 
8.01E-6 
5.48E-5 
1.23E-5 

2.39E-14 
2.39E-10 

8.13E-8 
0.03E-7 

Schwefel 
 

Best 
Mean 
Worst 
SD 

9781.549 
10813.984 
10905.389 

361.787 

9653.209 
10012.562 
10652.001 

307.905 

Sphere 
 

Best 
Mean 
Worst 
SD 

2.36E-8 
4.64E-6 
4.28E-5 
8.43E-6 

3.02E-10 
9.45E-8 
3.89E-6 
9.49E-8 

Step 
 

Best 
Mean 
Worst 
SD 

3.392 
4.141 
4.308 
0.532 

3.013 
3.994 
4.215 
0.486 

Perm Best 
Mean 
Worst 
SD 

3.38E-1 
4.16E-1 
5.45E-1 
1.41E-1 

2.24E-1 
3.74E-1 
4.98E-1 
1.28E-1 

Zakharov Best 
Mean 
Worst 
SD 

5.441 
7.372 
8.231 
2.817 

3.767 
6.662 
7.567 
1.705 

 

Table 5: Experimental results for 50 variables 
 

 

If we compare test results with 5 and 10 

variables (see Tables 3 and 4), we can observe that 

the performance is much worse in tests with 10 

variables in the original, as well in the modified CS 

algorithm.  

It is also interesting to notice that the original CS 

algorithm outperformed modified CS in Penalized 

test. It was not the case in 5 variables test. For other 

benchmarks, modified CS still performs better than 

the original.  

Now, if we contrast results for 10 variables with 

50 variables (see Tables 4 and 5), only minor 

performance impact can be noticed in higher 

number of variables test. Exceptions are Sphere, 

Rastrigin and Griewank functions. For example, 

best value for Sphere of modified algorithm is 

1.09*10
-16

 in 10 parameter test, while the same 

value for 50 parameter test is 3.02*10
-10

. 

Performance difference of 10
6
 in favor of 10 

parameter test is significant.  

In Rastrigin test, difference in best value is also 

significant (10
-3

), while mean value comparison 

shows just slightly performance variation (10
-1

).  

The greatest dissimilarity shows Griewank test. 

If we compare modified algorithms` results, we can 

notice that in 10 parameter tests, performance for 

best, mean and worst values are better by 

approximately the factor of 10
8
 than results in 50 

variables test.  

Overall, in 50 parameter test, modified CS shows 

better performance than the original for all 

benchmarks except for Penalized functions in all - 

best, worst, mean and standard deviation indicators. 

This noteworthy superiority of modified CS 

algorithm cannot be neglected.  

Experimental results in 100 parameter test are 

shown in Table 6, which is listed below. As we can 

see from Table 6, in 100 variables test, performance 

is further downgraded. Schwefel function shows 

results which are higher than 24 thousand. Penalized 

function values are slightly above 0, but still better 

in the original than in the modified CS algorithm. 

Only, Ackley, Griewank, Sphere and Rastrigin 

benchmarks achieved results which are close to 0. 

Step function best value is for example far from 

optimum, in both, original and modified algorithm 

(12.905 and 12.302, respectively). 

Like in previous test, modified algorithm shows 

better performance than the original. The only 

exception is Penalized function.  

In 500 variables test, Table 7, best values for 

Griewank, Rastrigin and Sphere functions only 

reach results close to 0. Also, modified CS obtained 

best Ackley`s result which is near to 0 (6.78*10
-1

). 
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Function  Original Modified 

Ackley 

Best 
Mean 
Worst 
SD 

1.93E-4 
0.002 
0.003 
0.002 

0.31E-4 
0.002 
0.003 
0.002 

DixonAndPrice 
 

Best 
Mean 
Worst 
SD 

0.668 
0.698 
0.711 
0.057 

0.598 
0.676 
0.695 
0.045 

Griewank 
 

Best 
Mean 
Worst 
SD 

3.62E-9 
2.81E-8 
3.30E-6 
3.11E-7 

0.61E-9 
1.05E-8 
1.15E-6 
1.85E-7 

Penalized 
 

Best 
Mean 
Worst 
SD 

0.402 
0.474 
0.587 
0.047 

0.502 
0.594 
0.659 
0.092 

Rastrigin 
 

Best 
Mean 
Worst 
SD 

4.45E-6 
1.31E-4 
7.00E-4 

     1.64E-4 

1.91E-11 
0.06E-8 
9.56E-5 
1.12E-5 

Schwefel 
 

Best 
Mean 
Worst 
SD 

24983.536 
26902.073 
27213.152 

664.865 

24339.456 
26233.125 
26886.309 

605.009 

Sphere 
 

Best 
Mean 
Worst 
SD 

3.12E-6 
4.62E-5 
1.85E-4 
5.28E-5 

9.83E-8 
7.24E-7 
6.72E-5 
6.09E-6 

Step 
 

Best 
Mean 
Worst 
SD 

12.905 
15.647 
18.203 

0.847 

12.302 
15.133 
17.898 

0.701 

Perm Best 
Mean 
Worst 
SD 

7.543 
16.964 
19.874 
6.449 

3.574 
8.614 
11.724 
4.270 

Zakharov Best 
Mean 
Worst 
SD 

13.895 
87.156 
102.647 
81.887 

11.287 
67.643 
89.083 
77.021 

 

Table 6: Experimental results for 100 variables 
 

If we observe mean values, it can be noticed that, 

within all tests conducted on original CS, only for 

Griewank's benchmark mean value is satisfying. On 

the other side, in modified CS, means for Rastrigin 

and Sphere functions are also satisfying. In those 

cases, modified CS substantially outscores the 

original. In this case, the difference between the 

original and modified CS algorithm can be well 

noticed. 

Sphere`s function best result obtained by 

modified algorithm is 8.13*10
-6

 and such, it is close 

to real optimum. Sphere`s mean results, generated 

by modified CS algorithm, show great performance 

(3.45*10
-2

). On the other side, mean value for the 

same function produced with original algorithm is 

slightly above 0 (0.004). 
 

 

Function  Original Modified 

Ackley 

Best 
Mean 
Worst 
SD 

0.002 
0.449 
5.419 
1.257 

6.78E-1 
0.222 
3.905 
0.872 

DixonAndPrice 
 

Best 
Mean 
Worst 
SD 

0.908 
1.049 
1.236 
0.068 

0.832 
0.967 
1.164 
0.031 

Griewank 
 

Best 
Mean 
Worst 
SD 

3.68E-6 
1.07E-4 

0.001 
2.63E-4 

0.15E-6 
9.08E-5 
9.92E-1 
8.51E-5 

Penalized 
 

Best 
Mean 
Worst 
SD 

0.955 
1.012 
1.049 
0.023 

1.019 
1.088 
1.115 
0.083 

Rastrigin 
 

Best 
Mean 
Worst 
SD 

4.74E-4 
0.010 
0.085 
0.017 

5.25E-6 
7.15E-2 
4.25E-1 
6.56E-2 

Schwefel 
 

Best 
Mean 
Worst 
SD 

171341.672 
174476.232 
176853.623 

1320.462 

165236.113 
168199.252 
171562.306 

1250.941 

Sphere 
 

Best 
Mean 
Worst 
SD 

5.91E-4 
0.004 
0.014 
0.004 

8.13E-6 
3.45E-2 
7.59E-1 
3.05E-1 

Step 
 

Best 
Mean 
Worst 
SD 

112.947 
116.062 
118.005 

1.040 

110.135 
113.892 
115.991 

0.952 

Perm Best 
Mean 
Worst 
SD 

89.364 
123.876 
154.747 
56.909 

78.989 
112.958 
139.003 
49.637 

Zakharov Best 
Mean 
Worst 
SD 

768.839 
890.983 
1022.987 
125.998 

809.876 
872.929 
987.928 
112.987 

 

Table 7: Experimental results for 500 variables 
 

Empirical results for 1000 tests are shown in 

Table 8.   

From Table 8, we can see that original CS 

algorithm in 1000 variables test obtained satisfying 

results only in Griewank benchmark. For all other 

test functions, results are less or more greater than 0, 

which is optimum for all benchmarks. 
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Modified CS showed different results. Best 

values for Ackley, Griewank, Rastrigin and Sphere 
for modified CS tests are almost optimal. 

 

 

Function  Original Modified 

Ackley 

Best 
Mean 
Worst 
SD 

0.005 
2.426 

11.469 
3.559 

9.99E-1 
0.952 
3.897 
1.005 

DixonAndPrice 
 

Best 
Mean 
Worst 
SD 

1.022 
1.482 
3.781 
0.545 

0.959 
1.159 
2.013 
0.302 

Griewank 
 

Best 
Mean 
Worst 
SD 

3.82E-5 
3.30E-4 

0.001 
3.02E-4 

9.78E-6 
0.35E-4 
9.98E-1 
1.05E-4 

Penalized 
 

Best 
Mean 
Worst 
SD 

1.069 
1.104 
1.143 
0.015 

1.103 
1.162 
1.198 
0.095 

Rastrigin 
 

Best 
Mean 
Worst 
SD 

0.003 
0.032 
0.176 
0.043 

9.03E-1 
0.001 
0.002 
0.011 

Schwefel 
 

Best 
Mean 
Worst 
SD 

364519.643 
368663.053 
373109.852 

1912.757 

352762.115 
357105.879 
361501.081 

982.250 

Sphere 
 

Best 
Mean 
Worst 
SD 

0.002 
0.028 
0.112 
0.027 

7.17E-1 
0.001 
0.004 
0.002 

Step 
 

Best 
Mean 
Worst 
SD 

238.727 
242.256 
244.712 

1.374 

230.651 
234.901 
236.611 

1.152 

Perm Best 
Mean 
Worst 
SD 

178.534 
203.654 
276.982 
92.332 

156.645 
187.536 
259.489 
78.488 

Zakharov Best 
Mean 
Worst 
SD 

1439.165 
1892.524 
2212.165 
546.186 

1423.547 
1765.825 
2182.753 
543.416 

 

Table 8: Experimental results for 1000 variables 
 

In this, 1000 parameter test, performance 

residuum between original and modified CS 

algorithm is the most obvious.   

In order to see performance decrement with the 

rise in number of variables on original and modified 

CS, we summarized results for Rastrigin function. 

Results for the original CS are presented in Table 9, 

while the same results are shown for modified CS in 

Table 10.  

 Best Mean Worst SD 

D=5 3.33E-22 1.77E-18 5.32E-16 9.56E-16 

D=10 1.77E-15 4.72E-09 4.54E-08 1.16E-08 
D=50 8.53E-8 8.01E-6 5.48E-5 1.23E-5 

D=100 4.45E-6 1.31E-4 7.00E-4 1.64E-4 
D=500 4.74E-4 0.010 0.085 0.017 
D=1000 0.003 0.032 0.176 0.043 

 

Table 9: Rastrigin function results – original CS  
 

Performance difference between original and 

modified algorithm is less in 5 and 10 parameter 

tests (compare results in Tables 9 and 10). In these 

tests, modified CS outscores original by 

approximately 10
1
. 

In 50 parameter test, greater result diversity can 

be noticed. Results difference for best values is 10
6
, 

while means discern by 10
4
. Similar situation is in 

100 parameter test.  

In 500 parameter test, original CS manifests 

satisfying results for best value only (4.74*10
-4

). 

Other indicators are above 0. In the same test, 

modified CS shows good results for all indicators 

(best, mean, and worst).  
 

 Best Mean Worst SD 

D=5 1.03E-23 3.52E-19 8.71E-17 5.52E-18 

D=10 5.03E-17 8.51E-11 8.13E-9 5.81E-10 

D=50 2.39E-14 2.39E-10 8.13E-8 0.03E-7 

D=100 1.91E-11 0.06E-8 9.56E-5 1.12E-5 

D=500 5.25E-6 7.15E-2 4.25E-1 6.56E-2 

D=1000 9.03E-1 0.001 0.002 0.011 
 

Table 10: Rastrigin function results – modified CS 

  

Finally, in 1000 variables test, original CS does 

not generate satisfying results. Best result achieved 

is 0.003. At the other side, modified algorithm’s 

best result is 9.03*10
-1

. For other indicators, 

modified CS also shows above 0 performances.  

As can be seen from presented tables, for almost 

all test functions, modified CS has performed 

slightly better than the original algorithm. The 

exception is Penalized function for which the 

original outperforms modified in 10, 50, 100, 500 

and 1000 parameter tests. Although there is no 

substantial improvement, presented performance 

benefit should not be neglected. More about 

unsuccessful. 

Modified algorithm, as well as original, 

establishes a fine balance of randomization and 

intensification with small number of control 

parameters. As for any metaheuristic algorithm, a 

good balance of intensive local search strategy and 

an efficient exploration of the whole search space 
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will usually lead to a more efficient algorithm [21]. 

On the other hand, there are only two parameters in 

this algorithm, the population size n, and pd. Once n 

is fixed, pd essentially controls the elitism and the 

balance of the randomization and local search. Few 

parameters make an algorithm less complex and 

thus potentially more generic. 

 

 

4 Conclusion 
In this paper, we presented an improved CS 

algorithm for unconstrained optimization problems. 

The capability and the performance of this 

algorithm was investigated through experiments on 

well-known test problems. The results obtained by 

the modified CS algorithm are satisfying.  

As can be seen from the comparative analysis 

between the original and modified CS algorithm for 

unconstrained optimization problems, new 

algorithm has performed slightly better in seven of 

eight benchmark functions. For only one function 

standard CS algorithm outperformed the modified 

one. Since cuckoo search is a very new algorithm 

and there are currently only few papers published 

about it, the algorithm is still in very early stage of 

development and initial tuning is necessary before it 

can be fairly compared to other, more mature 

algorithms. This paper represents an attempt to 

stabilize and improve algorithm and in the future in 

should be compared to other metaheuristics on the 

same benchmark functions. Future work will also 

include investigation of the modified CS 

performance in other benchmark and real-life 

problems. 
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