
Performance of a Modified Cuckoo Search Algorithm

for Unconstrained Optimization Problems

 Milan TUBA Milos SUBOTIC Nadezda STANAREVIC

 Faculty of Computer Science Faculty of Computer Science Faculty of Mathematics

University Megatrend Belgrade University Megatrend Belgrade University of Belgrade

 Bulevar umetnosti 29 Bulevar umetnosti 29 Studentski trg 16

 SERBIA SERBIA SERBIA

 tuba@ieee.org milos.subotic@gmail.com srna@stanarevic.com

Abstract: - Cuckoo search (CS) algorithm is one of the latest additions to the group of nature inspired

optimization heuristics. It has been introduced by Young and Deb in 2009 and was proven to be a promising

tool for solving hard optimization problems. This paper presents a modified cuckoo search algorithm for

unconstrained optimization problems. We implemented a modification where the step size is determined from

the sorted, rather than only permuted fitness matrix. Our modified algorithm was tested on ten standard

benchmark functions. Experimental results show that our modification improves results in most cases,

compared to the pure cuckoo search algorithm.

Key-Words: - Cuckoo search, Metaheuristic optimization, Unconstrained optimization, Nature inspired

algorithms

1 Introduction
1Optimization has always been an active research

area since many real-world optimization problems

belong to a class of hard problems. In all

optimization problems the goal is to find the

minimum or maximum of the objective function.

Thus, unconstrained optimization problems can be

formulated as minimization or maximization of D-

dimensional function:

 Min (or max) f(x), x=(x1,x2,x3,…xD) (1)

where D is the number of variables to be optimized.
Many population based algorithms were

proposed for solving unconstrained optimization

problems. Genetic Algorithms (GA), Particle

Swarm Optimization (PSO), and Bee Algorithms

(BA) are among most popular such algorithms. The

success or failure of a population based algorithms

depends on its ability to establish proper trade-off

between exploration and exploitation. A poor

balance between exploration and exploitation may

result in a stagnation and premature convergence to

local optima [1], [2].

GA is one of the most popular evolutionary

algorithms (EA) in which a population of

individuals evolves (moves through the fitness

This research is supported by Ministry of Science, Republic

of Serbia, Project No. III-44006

landscape) according to a set of rules such as

selection, crossover and mutation [3], [4], [5],

possibly hybridized with local search [6]. In GA

exploitation is performed by selection operator

where individuals move to the peaks in the fitness

landscape. Exploration is achieved by perturbing

individuals using crossover and mutation operators.

There is also fourth operator, introduced by John

Holland, called inversion which is nowadays rarely

used.

PSO algorithm is another example of population

based algorithms [7]. PSO is a stochastic optimiza-

tion technique which is well adapted to the

optimization of nonlinear functions in multi-

dimensional space and it has been applied to many

real-world problems [8]. A basic variant of the PSO

algorithm operates by having a population (swarm)

of candidate solutions (particles). Particles are

moved within the search space according to a simple

equation. The movements of the particles are guided

by their own best known position in the search

space as well as the entire swarm’s best known

position.

Ant colony optimization is well established

swarm intelligence metaheuristic based on ant

colony foraging behavior. It has been used

successfully for different problems [9], [10], [11].

Several metaheuristics have been proposed to

model the specific intelligent behavior of honey bee

swarms [12], [13], [14], [15]. The bee swarm

WSEAS TRANSACTIONS on SYSTEMS Milan Tuba, Milos Subotic, Nadezda Stanarevic

E-ISSN: 2224-2678 62 Issue 2, Volume 11, February 2012

intelligence was used in the development of

artificial systems aimed at solving complex

problems in traffic and transportation [13]. That

algorithm is called bee colony optimization

metaheuristic (BCO), which is used for solving

deterministic combinatorial problems, as well as

combinatorial problems characterized by

uncertainty. The artificial bee colony (ABC)

algorithm is a relatively new population based meta-

heuristic approach based on honey bee swarm [16].

In this algorithm possible solution to the problem is

represented by food source. Quality of the solution

is indicated by the amount of nectar of a particular

food source. Exploitation process is carried by

employed and onlooker bees, while exploration is

done by scouts. There are a number of

improvements to the ABC algorithm [17], [18],

[19].

A new metaheuristic search algorithm, called

cuckoo search (CS), based on cuckoo bird’s

behavior has been developed by Yang and Deb [20].

It is a very new population based metaheuristic for

global optimization and only few papers have been

published about it [21], [22]. The original article

does not explain all implementation details, there

are some differences between descriptions in the

original paper and later book by same authors [23].

We wanted to test our understanding of the original

algorithm as well as to try to improve it. In this

paper we will introduce our modified version of CS

algorithm and validate it against pure version on ten

standard unconstrained test functions. For testing

purposes, we developed our CS software named

CSapp on which we implemented both, original and

modified CS algorithm in order to make

comparison.

The rest of this paper is organized as follows. In

Section 2, we give a brief introduction to cuckoo

bird’s behavior which is necessary in order to

understand CS algorithm. However, the target topic

of Section 2 is detailed description of CS algorithm

in both forms: original and modified. Section 3

reports numerical test functions, experimental

settings of the algorithm, and experimental analysis

on the proposed approach in comparison with the

original CS algorithm. Finally, Section 4 concludes

this work.

2 Cuckoo search algorithm
Cuckoo birds attract attention because of their

unique aggressive reproduction strategy. Cuckoos

engage brood parasitism. It is a type of parasitism in

which a bird (brood parasite) lays and abandons its

eggs in the nest of another species. There are three

basic types of brood parasitism: intraspecific brood

parasitism, cooperative breeding, and nest takeover

[21]. Some species such as the Ani and Guira

cuckoos lay their eggs in communal nests, though

they may remove others’ eggs to increase the

hatching probability of their own eggs [20]. Some

host birds do not behave friendly against intruders

and engage in direct conflict with them. In such

situation host bird will throw those alien eggs away.

In other situations, more friendly hosts will simply

abandon its nest and build a new nest elsewhere.

While flying, some animals and insects follow

the path of long trajectories with sudden 90
0
 turns

combined with short, random movements. This

random walk is called Lévy flight and it describes

foraging patterns in natural systems, such as systems

of ants, bees, bumbles, and even zooplanktons.

Mathematical formulation of Lévy flight relates to

chaos theory and it is widely used in stochastic

simulations of random and pseudo-random

phenomena in nature. These flights can also be

noticed in the movements of turbulent fluids. One

example of Lévy flight paths is depicted on Fig. 1.

Fig. 1. Possible Lévy flight path

Lévy-style search behavior [24] and random

search in general has been applied to optimization

and implemented in many search algorithms [25],

[26]. One of such algorithms is CS [21]. Preliminary

results show its promising capability.

2.1 Description of the original CS algorithm

Cuckoo Search algorithm is population based

stochastic global search metaheuristics. It is based

on the general random walk system which will be

briefly described in this chapter.

WSEAS TRANSACTIONS on SYSTEMS Milan Tuba, Milos Subotic, Nadezda Stanarevic

E-ISSN: 2224-2678 63 Issue 2, Volume 11, February 2012

 In Cuckoo Search algorithm, potential solutions

corresponds to Cuckoo eggs. Nature systems are

complex and thus, they cannot be modeled by

computer algorithms in its basic form.

Simplification of natural systems is necessary for

successful implementation in computer algorithms.

One approach is to simplify novel Cuckoo

Search algorithm through three below presented

approximation rules:

 Cuckoos chose random location (nest) for

laying their eggs. Artificial cuckoo can lay only

one egg at the time.

 Elitist selection process is applied, so only the

eggs with highest quality are passed to the next

generation

 Host nests number is not adjustable. Host bird

discovers cuckoo egg with probability pd

[0,1]. If cuckoo egg is disclosed by the host, it

may be thrown away, or the host may abandon

its own nest and commit it to the cuckoo

intruder.

To make the things even simpler, the last

assumption can be approximated by the fraction of

pd of n nests that are replaced by new nests with new

random solutions. Considering maximization pro-

blem, the quality (fitness) of a solution can simply

be proportional to the value of its objective function.

Other forms of fitness can be defined in a similar

way the fitness function is defined in genetic algo-

rithms and other evolutionary computation algo-

rithms. A simple representation where one egg in a

nest represents a solution and a cuckoo egg

represents a new solution is used here. The aim is to

use the new and potentially better solutions

(cuckoos) to replace worse solutions that are in the

nests. It is clear that this algorithm can be extended

to the more complicated case where each nest has

multiple eggs representing a set of solutions.

A new solution x
(t+1)

 for cuckoo i is generated

using a Lévy flight according to the following

equation:

 xi
(t+1)

 = xi
(t)

 + α ^ Lévy (λ), (2)

where α (α>0) represents a step scaling size. This

parameter should be related to the scales of problem

the algorithm is trying to solve. In most cases, α can

be set to the value of 1 or some other constant. The

product ^ represents entry-wise multiplications.

Eq. (2) states that described random walk is a

Markov chain, whose next location depends on two

elements: current location (first term in Eq. 2) and

transition probability (second term in the same

expression).

The random step length is drawn from a Lévy

distribution which has an infinite variance with an

infinite mean:

 Lévy ~ u = t
-λ
 (3)

where λ (0,3].

Taking into account basic three rules described

above, pseudo code for CS algorithm is:

 Start
 Objective function f(x), x= (x1,x2…xu)T
 Generating initial population of n host nests xi

 (i=1,2,…n)
 While (t<MaxGenerations) and (! termin.condit.)
 Move a cuckoo randomly via Lévy flights
 Evaluate its fitness Fi
 Randomly choose nest among n available nests
 (for example j)
 If(Fi > Fj) Replace j by the new solution;
 Fraction pd of worse nests are abandoned and
 new nests are being built;
 Keep the best solutions or nests with quality
 solutions;
 Rank the solutions and find the current best
 End while
 Post process and visualize results
 End

2.2 Modified cuckoo search algorithm

In the real world, if a cuckoo's egg is very similar to

a host's eggs, then this cuckoo's egg is less likely to

be discovered, thus the fitness should be related to

the difference in solutions. Therefore, it is a good

idea to do a random walk in a biased way with some

random step sizes.

Both, original, and modified code use random

step sizes. Compared to the original code, we use

different function set for calculating this step size.

In the original code, step size is calculated using

following code expression:

r*nests[permute1[i]][j]- nests[permute2 [i]][j] (4)

where r is random number in [0,1] range, nests is

matrix which contains candidate solutions along

with their variables, permute1 and permute2 are

different rows permutation functions applied on

nests matrix.

In order to calculate the step size, instead of

Equation (4), we used:

r*nests [sorted [i]][j] - nests [permute [i]][j] (5)

The difference is that instead of permute1, we

used sorted function. This function sorts nests

WSEAS TRANSACTIONS on SYSTEMS Milan Tuba, Milos Subotic, Nadezda Stanarevic

E-ISSN: 2224-2678 64 Issue 2, Volume 11, February 2012

matrix by fitness of contained solutions. In this way,

higher fitness solutions have slight advantage over

solutions with lower fitness. This method keeps the

selection pressure (the degree to which highly fit

solutions are selected) towards better solutions and

algorithm should achieve better results. That does

not mean that high fitness solutions will flood

population and the algorithm will become stuck in

local optimum.

CS algorithm detects best solution Xbest at the

beginning of each iterative step. Also, at this point

step scale factor is being calculated using Eq. 6:

/1

2/)1(22/1

2/sin1

u , 1v (6)

where β denotes Lévy distribution parameter and

𝝘 denotes gamma function.
The evolution of cuckoo i starts with the donor

vector v, where v = xi
(t)

. . Step size is being

calculated according to Eq. 7.

Stepsize
(t+1)

=)(
||

01.0
/1)1(

)1(

bestt

t

xv
v

u

 (7)

where),0(~ 2

uNu),0(~ 2

vNv are samples

from corresponding normal distributions. Sample

from Levi distribution is generated by Mantegna’s

algorithm. For the step size according to Levi

distribution we used recommended parameter β=1.5.

Our modified algorithm depends on the best

found solution but it is not remembered in any

separate memory since the best solution, according

to the algorithm, is always retained among current

solutions. That means that the process retains

Markov property since the next state again depends

only on the current state and not the past.

CS algorithm uses some sort of elitism and

selection similar to that used in harmony search

[27]. However, the randomization is more efficient

as the step length is heavy-tailed, and any large step

is possible. Also, the number of tuning parameters

in CS is less than in GA and PSO, and thus CS can

be much easier adapted to a wider class of

optimization problems.

3 Experiments
In this section, we show experimental results which

validated our modified CS algorithm. As mentioned

above, we developed CS software (CSapp), and all

tests were run in our testing environment. We

developed our software in JAVA programming

language. We used the latest JDK (Java

Development Kit) version 7 and NetBeans IDE

(Integrated Development Environment) version

6.9.1, which keeps us up to date with the newest

software development concepts.

 For testing purposes, we also implemented

original version of CS algorithm. We compared

results of modified CS algorithm with the original

one. Comparison of results is shown in the tables

within this section.

3.1 Benchmarks
To test the performance of a modified CS, ten well

known benchmark functions are used here for

comparison, both in terms of optimum solution after

a predefined number of iterations and the robustness

of the algorithm i.e. mean value and variance and

worst solution for a number of runs. These

benchmarks are widely used in evaluating

performance of population based methods.

Some of the benchmark functions are unimodal,

while others are multimodal. A function is called

unimodal if it has only one optimum position. The

multimodal functions have two or more local

optima.

In order to show how our algorithm performs, we

used the following set of functions:

 Ackley

 DixonAndPrice

 Griewank

 Penalized

 Rastrigin

 Schwefel

 Sphere

 Step
 Perm
 Zakharov

Ackley function is a continuous, multimodal

function obtained by modulating an exponential

function with a cosine wave of moderate amplitude.

Originally, it was formulated by Ackley only for the

two – dimensional case. It is presented here in a

generalized, scalable version. Its topology is

characterized by an almost flat (due to the

dominating exponential) outer region and a central

hole or peak where the modulations by the cosine

wave become more and more influential.

Formulation:

f(x)= - 20exp(√

∑

) –

- exp (

∑

)

WSEAS TRANSACTIONS on SYSTEMS Milan Tuba, Milos Subotic, Nadezda Stanarevic

E-ISSN: 2224-2678 65 Issue 2, Volume 11, February 2012

The global minimum value for this function is 0

and the corresponding global optimum solution is

xopt =(x1, x2,…,xn) = (0, 0, . . . , 0).

Figure 1: Surface plot for Ackley function

DixonAndPrice is our second test function.

Formulation:

f(x)= + ∑

 2

Global minimum is f5 (x) = 0.

Figure 2: Surface plot for Dixon and Price

function

Griewank is third test function. Formulation:

f(x) = ∑

 ∏

 √

X is in the interval of [-600, 600]. The global

minimum value for this function is 0 and the

corresponding global optimum solution is xopt =(x1,

x2, . . . , xn) = (100, 100, . . . , 100). Since the

number of local optima increases with the

dimensionality, this function is strongly multimodal.

The multimodality disappears for sufficiently high

dimensionalities (n > 30) and the problem seems

unimodal.

Figure 3: Surface plot for Griewank function

Penalized function is difficult for optimization

because of its combinations of different periods of

the sine function. Formulation:

)](sin101[)1(

)1()(sin10
)(

1

221

1

22

i

n

i i

ni

yy

yy

n

x
xf

)4,100,10,(

1

n

i ixu

yi = 1 +

 (xi + 1)

axaxk

axa

axaxk

mkaxu

i

m

i

i

i

m

i

i

,)(

,0

,,)(

),,,(

The global minimum value for this function is 0

and the corresponding global optimum solution is

xopt =(x1, x2, . . . , xn-1, xn) = (-1, -1, . . . , -1, -5). X

is in the interval of [-32, 32].

Figure 4: Surface plot for penalized function

Rastrigin function is based on Sphere function

with the addition of cosine modulation to produce

many local minima. Formulation:

WSEAS TRANSACTIONS on SYSTEMS Milan Tuba, Milos Subotic, Nadezda Stanarevic

E-ISSN: 2224-2678 66 Issue 2, Volume 11, February 2012

f(x) = 10n + ∑

The global minimum value for this function is 0

and the corresponding global optimum solution is

xopt =(x1, x2, . . . , xn) = (0, 0, . . . , 0). X is in the

interval of [-5.12, 5.12].

Figure 5: Surface plot for Rastrigin function

Schwefel function as our sixth benchmark.

Formulation:

f(x) = ∑ √

This function has a value - 418.9828 and at its

global minimum (420.9867, 420.9867,…,

420.9867). Schwefel’s function is deceptive in that

the global minimum is geometrically distant, over

the variable space, from the next best local minima.

Therefore, the search algorithms are potentially

prone to convergence in the wrong direction. Test

area is usually restricted to hypercube – 500 ≤ xi ≤

500, i = 1, . . . , n.

Figure 6: Surface plot for Schwefel function

Sphere function that is continuous, convex and

unimodal. Formulation:

f(x)=∑

Global minimum value for this function is 0 and

optimum solution is xopt =(x1, x2,…,xn) = (0, 0, .. , 0).

x is in the interval of [-100, 100].

Figure 7: Surface plot for Sphere function

Step is our eighth benchmark function.

Formulation:

f(x) = ∑

This function represents the problem of flat

surfaces. It is very hard for algorithms without

variable step sizes to conquer flat surfaces problems

because there is no information about which

direction can provide optimal solution.

Figure 8: Surface plot for Step function

Ninth function used for tests is Perm function.

Formulation:

n

k

n

i
i

kkxf ixi
1

2

1

)()1)/()(5.0(

The global minimum of Perm function is 0and

corresponding optimal solution is xopt = (x1, x2, . . .

xn) = (1, 2,…, n).

WSEAS TRANSACTIONS on SYSTEMS Milan Tuba, Milos Subotic, Nadezda Stanarevic

E-ISSN: 2224-2678 67 Issue 2, Volume 11, February 2012

Figure 9: Surface plot for Perm function

Our last test function is Zakharov function.

Formulation:

)5.01()5.0(
11

)(

42

1

2

xiixix i

n

i

n

i
ixf

n

i
i

Zakharov function has a global minimum of 0 for

xopt = (x1, x2, . . . xn) = (0, 0,…, 0).

Figure 10: Surface plot for Zakharov function

Summary of above mentioned benchmarks is

given in Table 1. Variable range and formulation is

shown for the each test function. Optimum for all

functions is at (0, …, 0).

3.2 Experimental results and algorithm’s

 settings
We tried to vary the number of host nests

(population size n) and the probability of discovery

pd. We have used different settings for n (5, 10, 15,

20, 50, 100, 150, 250, 500) and for pd. (0, 0.01, 0.05,

0.1, 0.15, 0.2, 0.25, 0.4, 0.5) . From test phase

simulations, we found that n = 25 and pd = 0.25 are

sufficient for most optimization problems. This

means that the fine parameters tuning are not needed

for any given problem. Therefore, we used fixed

n = 25 and pd = 0.25 for all given problems.

Function Range Formulation

Ackley

[-32,32]
n

- 20exp(√

∑

) – exp

(

∑

)

DixAndPr [-10,10]
n

 + ∑

 2

Griewank

[-
600,600]

n

∑

 ∏

 √

Penalized [-50,50]
n

)](sin101[)1(

)1()(sin10
)(

1

221

1

22

i

n

i i

ni

yy

yy

n

x
xf

)4,100,10,(
1

n

i ixu

yi = 1 +

 (xi + 1)

axaxk

axa

axaxk

mkaxu

i

m

i

i

i

m

i

i

,)(

,0

,,)(

),,,(

Rastrigin

[-
5.12,5.12]

n

10n + ∑

Schwefel

[-

500,500]
n

∑ √

Sphere

[-
100,100]

n

∑

Step
[-

100,100]
n

∑

Perm
[-

100,100]
n

n

k

n

i
i

kkxf ixi
1

2

1

)()1)/()(5.0(

Zakharov
[-

100,100]
n

)5.01()5.0(
11

)(

42

1

2

xiixix i

n

i

n

i
ixf

n

i
i

Table 1: Benchmark functions summary

We tested each benchmark function six times

with 5, 10, 50, 100, 500 and 1000 variables. Thus,

we conducted totally 48 tests (8 functions * 6

variable numbers). For every test, we carried on 30

runs with 500 cycles per each run. We printed out

best, worst and mean results as well the standard

deviation within the set of 30 runs. Parameter

settings are in Table 2.

Parameter Value

Runtime 30

Max Cycle 500

n 25

D 5/10/50/100/500/1000

pd 0.25

Table 2: Parameter settings for benchmark

functions.

WSEAS TRANSACTIONS on SYSTEMS Milan Tuba, Milos Subotic, Nadezda Stanarevic

E-ISSN: 2224-2678 68 Issue 2, Volume 11, February 2012

Tests were done on Intel Core2Duo T8300

mobile processor with 4GB of RAM on Windows 7

x64 Ultimate Operating System and NetBeans 6.9.1

IDE (Integrated Development Environment).

Experimental results with 5, 10, 50, 100, 500 and

1000 variables are shown in Tables 3, 4, 5, 6, 7 and

8 respectively. All tables have two columns with

results in order to make side by side comparison. In

the first column, we show results of original, and in

the second, results of modified algorithm. We

showed values for best, mean, worst and standard

deviation.

Function Original Modified

Ackley

Best
Mean
Worst
SD

1.17E-12
8.52E-11
1.24E-09
2.23E-10

3.05E-13
0.01E-11
9.52E-10
1.12E-10

DixonAndPrice

Best
Mean
Worst
SD

3.40E-1
0.057
0.123
0.097

2.32E-2
0.008
0.035
0.012

Griewank

Best
Mean
Worst
SD

1.32E-28
6.72E-26
1.65E-23
3.26E-24

5.66E-29
9.05E-27
5.97E-24
9.31E-25

Penalized

Best
Mean
Worst
SD

1.29E-6
2.04E-5
9.77E-5
2.17E-5

5.49E-7
1.12E-5
5.69E-5
0.11E-5

Rastrigin

Best
Mean
Worst
SD

3.33E-22
1.77E-18
5.32E-16
9.56E-16

1.03E-23
3.52E-19
8.71E-17
5.52E-18

Schwefel

Best
Mean
Worst
SD

0.391
134.333
152.219

68.546

0.352
125.886
138.137

56.002

Sphere

Best
Mean
Worst
SD

5.25E-26
2.50E-22
3.75E-21
7.88E-22

4.63E-28
8.45E-24
7.34E-22
4.23E-23

Step

Best
Mean
Worst
SD

3.87E-6
3.57E-5
4.56E-4
4.60E-5

1.23E-6
1.44E-5

1.002E-4
1.05E-5

Perm Best
Mean
Worst
SD

1.34E-3
2.89E-3
3.01E-3
4.34E-4

6.20E-4
1.46E-3
1.76E-3
7.73E-4

Zakharov Best
Mean
Worst
SD

1.02E-1
1.37E-1
1.63E-1
1.32E-1

3.78E-2
4.21E-2
5.98E-2
1.58E-2

Table 3: Experimental results for 5 variables

Reported numbers are objective function values,

solution vectors are not of particular interest since

there are no constraints in these benchmark

functions.

As we can see from the Table 3, modified CS

algorithm has outperformed the original algorithm

in all eight benchmark functions in tests with 5

variables. Best values for almost all test functions

are better by factor of 10
-1

. Difference in mean

values is less pronounced. Results for Sphere

benchmark showed slightly higher difference, where

modified CS outscored the original by factor of 10
-2

.

Function Original Modified

Ackley

Best
Mean
Worst
SD

1.65E-7
1.10E-6
3.85E-6
9.30E-7

3.56E-8
9.13E-7
0.09E-6
0.05E-8

DixonAndPrice

Best
Mean
Worst
SD

0.593
0.664
0.703
0.013

0.455
0.602
0.679
0.004

Griewank

Best
Mean
Worst
SD

9.18E-18
5.03E-15
4.82E-14
9.89E-15

5.67E-19
7.56E-16
9.75E-15
8.92E-16

Penalized

Best
Mean
Worst
SD

3.20E-4
2.19E-4
1.01E-3
9.93E-3

8.45E-4
1.22E-3
4.32E-2
1.02E-2

Rastrigin

Best
Mean
Worst
SD

1.77E-15
4.72E-09
4.54E-08
1.16E-08

5.03E-17
8.51E-11

8.13E-9
5.81E-10

Schwefel

Best
Mean
Worst
SD

661.309
883.518
903.102
124.294

628.205
862.334
891.367
102.004

Sphere

Best
Mean
Worst
SD

4.29E-15
6.04E-13
5.12E-12
9.66E-13

1.09E-16
2.32E-14
4.56E-13
4.29E-14

Step

Best
Mean
Worst
SD

8.12E-5
3.33E-4
2.52E-3
7.66E-4

1.05E-5
1.23E-4
0.05E-3
2.52E-4

Perm Best
Mean
Worst
SD

5.03E-2
7.12E-2
8.64E-2
5.20E-3

1.06E-2
6.37E-2
8.02E-2
4.60E-3

Zakharov Best
Mean
Worst
SD

4.77E-1
5.41E-1
6.56E-1
1.87E-1

3.34E-1
4.26E-1
5.34E-1
1.78E-1

Table 4: Experimental results for 10 variables

WSEAS TRANSACTIONS on SYSTEMS Milan Tuba, Milos Subotic, Nadezda Stanarevic

E-ISSN: 2224-2678 69 Issue 2, Volume 11, February 2012

Both algorithms achieved downward results in

Schwefel function tests, where best results for both

algorithms reached are far away from Schwefel`s

real optimum (0.391 (original) compared to 0.352

(modified)). This can be explained with deceptive

nature of Schwefel function whose global minimum

is geometrically distant over the variables space

from the next best local minima. Deceptiveness

protracts optimization and algorithms converge in

the wrong direction (see Section 3.1).

Function Original Modified

Ackley

Best
Mean
Worst
SD

3.91E-5
5.39E-4
1.25E-3
4.19E-4

0.72E-5
3.21E-4
0.05E-3
2.09E-4

DixonAndPrice

Best
Mean
Worst
SD

0.667
0.674
0.692
0.022

0.625
0.661
0.685
0.015

Griewank

Best
Mean
Worst
SD

1.58E-9
1.60E-8
1.10E-7
2.50E-8

9.92E-10
0.41E-8
9.92E-8
1.02E-8

Penalized

Best
Mean
Worst
SD

0.115
0.206
0.295
0.039

0.193
0.288
0.322
0.076

Rastrigin

Best
Mean
Worst
SD

8.53E-8
8.01E-6
5.48E-5
1.23E-5

2.39E-14
2.39E-10

8.13E-8
0.03E-7

Schwefel

Best
Mean
Worst
SD

9781.549
10813.984
10905.389

361.787

9653.209
10012.562
10652.001

307.905

Sphere

Best
Mean
Worst
SD

2.36E-8
4.64E-6
4.28E-5
8.43E-6

3.02E-10
9.45E-8
3.89E-6
9.49E-8

Step

Best
Mean
Worst
SD

3.392
4.141
4.308
0.532

3.013
3.994
4.215
0.486

Perm Best
Mean
Worst
SD

3.38E-1
4.16E-1
5.45E-1
1.41E-1

2.24E-1
3.74E-1
4.98E-1
1.28E-1

Zakharov Best
Mean
Worst
SD

5.441
7.372
8.231
2.817

3.767
6.662
7.567
1.705

Table 5: Experimental results for 50 variables

If we compare test results with 5 and 10

variables (see Tables 3 and 4), we can observe that

the performance is much worse in tests with 10

variables in the original, as well in the modified CS

algorithm.

It is also interesting to notice that the original CS

algorithm outperformed modified CS in Penalized

test. It was not the case in 5 variables test. For other

benchmarks, modified CS still performs better than

the original.

Now, if we contrast results for 10 variables with

50 variables (see Tables 4 and 5), only minor

performance impact can be noticed in higher

number of variables test. Exceptions are Sphere,

Rastrigin and Griewank functions. For example,

best value for Sphere of modified algorithm is

1.09*10
-16

 in 10 parameter test, while the same

value for 50 parameter test is 3.02*10
-10

.

Performance difference of 10
6
 in favor of 10

parameter test is significant.

In Rastrigin test, difference in best value is also

significant (10
-3

), while mean value comparison

shows just slightly performance variation (10
-1

).

The greatest dissimilarity shows Griewank test.

If we compare modified algorithms` results, we can

notice that in 10 parameter tests, performance for

best, mean and worst values are better by

approximately the factor of 10
8
 than results in 50

variables test.

Overall, in 50 parameter test, modified CS shows

better performance than the original for all

benchmarks except for Penalized functions in all -

best, worst, mean and standard deviation indicators.

This noteworthy superiority of modified CS

algorithm cannot be neglected.

Experimental results in 100 parameter test are

shown in Table 6, which is listed below. As we can

see from Table 6, in 100 variables test, performance

is further downgraded. Schwefel function shows

results which are higher than 24 thousand. Penalized

function values are slightly above 0, but still better

in the original than in the modified CS algorithm.

Only, Ackley, Griewank, Sphere and Rastrigin

benchmarks achieved results which are close to 0.

Step function best value is for example far from

optimum, in both, original and modified algorithm

(12.905 and 12.302, respectively).

Like in previous test, modified algorithm shows

better performance than the original. The only

exception is Penalized function.

In 500 variables test, Table 7, best values for

Griewank, Rastrigin and Sphere functions only

reach results close to 0. Also, modified CS obtained

best Ackley`s result which is near to 0 (6.78*10
-1

).

WSEAS TRANSACTIONS on SYSTEMS Milan Tuba, Milos Subotic, Nadezda Stanarevic

E-ISSN: 2224-2678 70 Issue 2, Volume 11, February 2012

Function Original Modified

Ackley

Best
Mean
Worst
SD

1.93E-4
0.002
0.003
0.002

0.31E-4
0.002
0.003
0.002

DixonAndPrice

Best
Mean
Worst
SD

0.668
0.698
0.711
0.057

0.598
0.676
0.695
0.045

Griewank

Best
Mean
Worst
SD

3.62E-9
2.81E-8
3.30E-6
3.11E-7

0.61E-9
1.05E-8
1.15E-6
1.85E-7

Penalized

Best
Mean
Worst
SD

0.402
0.474
0.587
0.047

0.502
0.594
0.659
0.092

Rastrigin

Best
Mean
Worst
SD

4.45E-6
1.31E-4
7.00E-4

 1.64E-4

1.91E-11
0.06E-8
9.56E-5
1.12E-5

Schwefel

Best
Mean
Worst
SD

24983.536
26902.073
27213.152

664.865

24339.456
26233.125
26886.309

605.009

Sphere

Best
Mean
Worst
SD

3.12E-6
4.62E-5
1.85E-4
5.28E-5

9.83E-8
7.24E-7
6.72E-5
6.09E-6

Step

Best
Mean
Worst
SD

12.905
15.647
18.203

0.847

12.302
15.133
17.898

0.701

Perm Best
Mean
Worst
SD

7.543
16.964
19.874
6.449

3.574
8.614
11.724
4.270

Zakharov Best
Mean
Worst
SD

13.895
87.156
102.647
81.887

11.287
67.643
89.083
77.021

Table 6: Experimental results for 100 variables

If we observe mean values, it can be noticed that,

within all tests conducted on original CS, only for

Griewank's benchmark mean value is satisfying. On

the other side, in modified CS, means for Rastrigin

and Sphere functions are also satisfying. In those

cases, modified CS substantially outscores the

original. In this case, the difference between the

original and modified CS algorithm can be well

noticed.

Sphere`s function best result obtained by

modified algorithm is 8.13*10
-6

 and such, it is close

to real optimum. Sphere`s mean results, generated

by modified CS algorithm, show great performance

(3.45*10
-2

). On the other side, mean value for the

same function produced with original algorithm is

slightly above 0 (0.004).

Function Original Modified

Ackley

Best
Mean
Worst
SD

0.002
0.449
5.419
1.257

6.78E-1
0.222
3.905
0.872

DixonAndPrice

Best
Mean
Worst
SD

0.908
1.049
1.236
0.068

0.832
0.967
1.164
0.031

Griewank

Best
Mean
Worst
SD

3.68E-6
1.07E-4

0.001
2.63E-4

0.15E-6
9.08E-5
9.92E-1
8.51E-5

Penalized

Best
Mean
Worst
SD

0.955
1.012
1.049
0.023

1.019
1.088
1.115
0.083

Rastrigin

Best
Mean
Worst
SD

4.74E-4
0.010
0.085
0.017

5.25E-6
7.15E-2
4.25E-1
6.56E-2

Schwefel

Best
Mean
Worst
SD

171341.672
174476.232
176853.623

1320.462

165236.113
168199.252
171562.306

1250.941

Sphere

Best
Mean
Worst
SD

5.91E-4
0.004
0.014
0.004

8.13E-6
3.45E-2
7.59E-1
3.05E-1

Step

Best
Mean
Worst
SD

112.947
116.062
118.005

1.040

110.135
113.892
115.991

0.952

Perm Best
Mean
Worst
SD

89.364
123.876
154.747
56.909

78.989
112.958
139.003
49.637

Zakharov Best
Mean
Worst
SD

768.839
890.983
1022.987
125.998

809.876
872.929
987.928
112.987

Table 7: Experimental results for 500 variables

Empirical results for 1000 tests are shown in

Table 8.

From Table 8, we can see that original CS

algorithm in 1000 variables test obtained satisfying

results only in Griewank benchmark. For all other

test functions, results are less or more greater than 0,

which is optimum for all benchmarks.

WSEAS TRANSACTIONS on SYSTEMS Milan Tuba, Milos Subotic, Nadezda Stanarevic

E-ISSN: 2224-2678 71 Issue 2, Volume 11, February 2012

Modified CS showed different results. Best

values for Ackley, Griewank, Rastrigin and Sphere
for modified CS tests are almost optimal.

Function Original Modified

Ackley

Best
Mean
Worst
SD

0.005
2.426

11.469
3.559

9.99E-1
0.952
3.897
1.005

DixonAndPrice

Best
Mean
Worst
SD

1.022
1.482
3.781
0.545

0.959
1.159
2.013
0.302

Griewank

Best
Mean
Worst
SD

3.82E-5
3.30E-4

0.001
3.02E-4

9.78E-6
0.35E-4
9.98E-1
1.05E-4

Penalized

Best
Mean
Worst
SD

1.069
1.104
1.143
0.015

1.103
1.162
1.198
0.095

Rastrigin

Best
Mean
Worst
SD

0.003
0.032
0.176
0.043

9.03E-1
0.001
0.002
0.011

Schwefel

Best
Mean
Worst
SD

364519.643
368663.053
373109.852

1912.757

352762.115
357105.879
361501.081

982.250

Sphere

Best
Mean
Worst
SD

0.002
0.028
0.112
0.027

7.17E-1
0.001
0.004
0.002

Step

Best
Mean
Worst
SD

238.727
242.256
244.712

1.374

230.651
234.901
236.611

1.152

Perm Best
Mean
Worst
SD

178.534
203.654
276.982
92.332

156.645
187.536
259.489
78.488

Zakharov Best
Mean
Worst
SD

1439.165
1892.524
2212.165
546.186

1423.547
1765.825
2182.753
543.416

Table 8: Experimental results for 1000 variables

In this, 1000 parameter test, performance

residuum between original and modified CS

algorithm is the most obvious.

In order to see performance decrement with the

rise in number of variables on original and modified

CS, we summarized results for Rastrigin function.

Results for the original CS are presented in Table 9,

while the same results are shown for modified CS in

Table 10.

 Best Mean Worst SD

D=5 3.33E-22 1.77E-18 5.32E-16 9.56E-16

D=10 1.77E-15 4.72E-09 4.54E-08 1.16E-08
D=50 8.53E-8 8.01E-6 5.48E-5 1.23E-5

D=100 4.45E-6 1.31E-4 7.00E-4 1.64E-4
D=500 4.74E-4 0.010 0.085 0.017
D=1000 0.003 0.032 0.176 0.043

Table 9: Rastrigin function results – original CS

Performance difference between original and

modified algorithm is less in 5 and 10 parameter

tests (compare results in Tables 9 and 10). In these

tests, modified CS outscores original by

approximately 10
1
.

In 50 parameter test, greater result diversity can

be noticed. Results difference for best values is 10
6
,

while means discern by 10
4
. Similar situation is in

100 parameter test.

In 500 parameter test, original CS manifests

satisfying results for best value only (4.74*10
-4

).

Other indicators are above 0. In the same test,

modified CS shows good results for all indicators

(best, mean, and worst).

 Best Mean Worst SD

D=5 1.03E-23 3.52E-19 8.71E-17 5.52E-18

D=10 5.03E-17 8.51E-11 8.13E-9 5.81E-10

D=50 2.39E-14 2.39E-10 8.13E-8 0.03E-7

D=100 1.91E-11 0.06E-8 9.56E-5 1.12E-5

D=500 5.25E-6 7.15E-2 4.25E-1 6.56E-2

D=1000 9.03E-1 0.001 0.002 0.011

Table 10: Rastrigin function results – modified CS

Finally, in 1000 variables test, original CS does

not generate satisfying results. Best result achieved

is 0.003. At the other side, modified algorithm’s

best result is 9.03*10
-1

. For other indicators,

modified CS also shows above 0 performances.

As can be seen from presented tables, for almost

all test functions, modified CS has performed

slightly better than the original algorithm. The

exception is Penalized function for which the

original outperforms modified in 10, 50, 100, 500

and 1000 parameter tests. Although there is no

substantial improvement, presented performance

benefit should not be neglected. More about

unsuccessful.

Modified algorithm, as well as original,

establishes a fine balance of randomization and

intensification with small number of control

parameters. As for any metaheuristic algorithm, a

good balance of intensive local search strategy and

an efficient exploration of the whole search space

WSEAS TRANSACTIONS on SYSTEMS Milan Tuba, Milos Subotic, Nadezda Stanarevic

E-ISSN: 2224-2678 72 Issue 2, Volume 11, February 2012

will usually lead to a more efficient algorithm [21].

On the other hand, there are only two parameters in

this algorithm, the population size n, and pd. Once n

is fixed, pd essentially controls the elitism and the

balance of the randomization and local search. Few

parameters make an algorithm less complex and

thus potentially more generic.

4 Conclusion
In this paper, we presented an improved CS

algorithm for unconstrained optimization problems.

The capability and the performance of this

algorithm was investigated through experiments on

well-known test problems. The results obtained by

the modified CS algorithm are satisfying.

As can be seen from the comparative analysis

between the original and modified CS algorithm for

unconstrained optimization problems, new

algorithm has performed slightly better in seven of

eight benchmark functions. For only one function

standard CS algorithm outperformed the modified

one. Since cuckoo search is a very new algorithm

and there are currently only few papers published

about it, the algorithm is still in very early stage of

development and initial tuning is necessary before it

can be fairly compared to other, more mature

algorithms. This paper represents an attempt to

stabilize and improve algorithm and in the future in

should be compared to other metaheuristics on the

same benchmark functions. Future work will also

include investigation of the modified CS

performance in other benchmark and real-life

problems.

References:

[1] Milan Tuba: Swarm Intelligence Algorithms

Parameter Tuning, Proceedings of the

American Conference on Applied Mathematics

(AMERICAN-MATH'12), Cambridge, USA,

2012, pp. 389-394

[2] Milan Tuba: Artificial Bee Colony (ABC)

Algorithm Exploitation and Exploration

Balance, Proceedings of the 1
st
 International

Conference on Computing, Information

Systems and Communications (CISCO'12),

Singapore, May, 2012, pp.252-257

[3] Mitchell Melanie, Introduction to Genetic

Algorithms, MIT Press, 1999, p. 158.

[4] Vlahovic, N., Problem solving by AI: Logic

programming vs. Genetic algorithms; In: Aurer,

B., Kermek, D., editors. Proceedings of the

15th International Conference on Information

and Intelligent Systems, September 22-24,

2004, Varazdin, Croatia; Faculty of

Organization and Informatics Varazdin,

University of Zagreb; Varazdin; 2004. pp. 309-

317

[5] Neri F. (2012). “Learning and Predicting

Financial Time Series by Combining

Evolutionary Computation and Agent

Simulation”, Transactions on Computational

Collective Intelligence, vol. 6, Springer,

Heidelberg, vol. 7, pp. 202-221

[6] Moghrabi, “Guided Local Search for Query

Reformulation using Weight Propagation”,

International Journal of Applied Mathematics

and Computer Science (AMCS), Vol. 16, No.

4, 537-549, 2006.

[7] Muhammad S. Yousuf, Hussain N. Al-

Duwaish, Zakaryia M. Al-Hamouz, PSO based

Single and Two Interconnected Area Predictive

Automatic Generation Control, WSEAS

Transactions on System and Control, Vol. 5,

Issue 8, 2010, pp. 677-690.

[8] Angel E. Mu˜noz Zavala, Arturo H. Aguirre,

Enrique R. Villa Diharce, Constrained

Optimization via Particle Evolutionary Swarm

Optimization Algorithm (PESO), Proceedings

of the 2005 conference on Genetic and

evolutionary computation, Article in Press,

2005, doi:10.1145/1068009.1068041, pp. 209-

216.

[9] Raka Jovanovic, Milan Tuba: An ant colony

optimization algorithm with improved

pheromone correction strategy for the

minimum weight vertex cover problem, Applied

Soft Computing, Vol. 11, Issue 8, Dec. 2011,

ISSN 1568-4946, pp. 5360–5366

[10] Raka Jovanovic, Milan Tuba, Dana Simian:

Comparison of Different Topologies for Island-

Based Multi-Colony Ant Algorithms for the

Minimum Weight Vertex Cover Problem,

WSEAS Transactions on Computers, Issue 1,

Volume 9, January 2010, pp. 83-92

[11] Milan Tuba, Raka Jovanovic: An Analysis of

Different Variations of Ant Colony

Optimization to the Minimum Weight Vertex

Cover Problem, WSEAS Transactions on

Information Science and Applications, Issue 6,

Volume 6, June 2009, pp. 936-945

[12] Reza A., Alireza M., Koorush Z., A novel bee

swarm optimization algorithm for numerical

function optimization, Communications in

Nonlinear Science and Numerical Simulation,

Vol. 15, Issue 10, 2009, pp. 3142-3155.

[13] Teodorovic, D., Dell’Orco M., Bee colony

optimization-a cooperative learning approach

to complex transportation problems,

WSEAS TRANSACTIONS on SYSTEMS Milan Tuba, Milos Subotic, Nadezda Stanarevic

E-ISSN: 2224-2678 73 Issue 2, Volume 11, February 2012

Proceedings of the 16th Mini - EURO

Conference and 10th Meeting of EWGT -

Advanced OR and AI Methods in

Transportation, 2005, pp. 51-60.

[14] Drias, H., Sadeg, S., Yahi, S, Cooperative bees

swarm for solving the maximum weighted

satisfiability problem, Lecture notes in

computer science, Volume 3512, 2005, pp.

318-325.

[15] L. Jiann-Horng, H. Li-Ren, Chaotic bee swarm

optimization algorithm for path planning of

mobile robots, Proceedings of the 10th WSEAS

international conference on evolutionary

computing, 2009, pp. 84-89.

[16] Behriye Akay, Dervis Karaboga, A modified

Artificial Bee Colony algorithm for real

parameter optimization, Information Sciences,

Article in Press, doi:10.1016/j.ins.2010.07.015,

2010.

[17] Nebojsa Bacanin, Milan Tuba: Artificial Bee

Colony (ABC) Algorithm for Constrained

Optimization Improved with Genetic

Operators, Studies in Informatics and Control,

Vol. 21, Issue 2, June 2012, pp.

[18] Nadezda Stanarevic, Milan Tuba, and Nebojsa

Bacanin: Modified artificial bee colony

algorithm for constrained problems

optimization, International Journal of

Mathematical Models and Methods in Applied

Sciences, Vol. 5, Issue 3, 2011, pp. 644-651

[19] Ivona Brajevic and Milan Tuba: An upgraded

artificial bee colony algorithm (ABC) for

constrained optimization problems, Journal of

Intelligent Manufacturing, published Online

First, Jan 2012, DOI: 10.1007/s10845-011-

0621-6

[20] Yang, X. S. and Deb, S., Cuckoo search via
Lévy flights, in: Proc. of World Congress on

Nature & Biologically Inspired Computing

(NaBIC 2009), 2009, pp. 210-214.

[21] Yang, X. S., and Deb, S. Engineering

Optimisation by Cuckoo Search, Int. J. of

Mathematical Modelling and Numerical

Optimisation, Vol. 1, No. 4, 2010, pp. 330–

343.

[22] Milan Tuba, Milos Subotic, Nadezda

Stanarevic: Modified cuckoo search algorithm

for unconstrained optimization problems,

Proceedings of the European Computing

Conference (ECC ’11), pp. 263-268, Paris,

France, April 2011

[23] Xin-She Yang: Nature-Inspired Metaheuristic

Algorithms, Second Edition, Luniver Press,

2011, p. 160

[24] Viswanathan, G. M.; Raposo, E. P.; da Luz, M.

G. E.: "Lévy flights and superdiffusion in the

context of biological encounters and random

searches". Physics of Life Reviews 5 (3), 2008,

pp. 133–150.

[25] T. Y. Chen, Y. L. Cheng, Global optimization

using hybrid approach, WSEAS Transactions

on Mathematics, Vol. 7, Issue 6, 2008, pp. 254-

262.

[26] L. Ozdamar: A dual sequence simulated

annealing algorithm for constrained

optimization, Proceedings of the 10th WSEAS

International Conference on applied

mathematics, 2006, pp. 557-564.

[27] Geem Z. W., Kim J. H., and Loganathan G. V.,

A New Heuristic Optimization Algorithm:

Harmony Search, Simulation, 2001, vol. 76 No.

2, pp. 60-68

WSEAS TRANSACTIONS on SYSTEMS Milan Tuba, Milos Subotic, Nadezda Stanarevic

E-ISSN: 2224-2678 74 Issue 2, Volume 11, February 2012

http://www.google.rs/search?hl=sr&tbo=p&tbm=bks&q=inauthor:%22Xin-She+Yang%22

